电影一区二区三区_亚洲激情二区_亚洲欧洲成人av每日更新_91超碰国产在线

Edge Coupled Stripline Impedance

PCB Differential Stripline Impedance Calculator

Differential Stripline Impedance Calculator

Edge Coupled Stripline Impedance Calculator

differntial edge coupled stripline impedance diagram

Inputs

Trace Thickness
T
Substrate Height
H1
Trace Width
W
Trace Spacing
S
Substrate Dielectric
Er

Outputs

Odd (Z):????
Even (Z):????
Common (Z):????
Differential (Z):????
????

Introduction

The edge couple differential symmetric stripline transmission line is a common technique for routing differential traces. There are four different types of impedance used in characterizing differential trace impedances. This calculator finds both odd and even transmission line impedance. Modeling approximation can be used to understand the impedance of the edge couple differential stripline transmission line.

Description

An edge couple differential symmetric stripline transmission line is constructed with two traces referenced to the same reference planes above and below the traces. There is a dielectric material between them. There is also some coupling between the lines. This coupling is one of the features of differential traces. Usually it is good practice to match differential trace length and to keep the distances between the traces consistent. Also avoid placing vias and other structures between these traces.

Differential Impedance Definitions

Differential Impedance The impedance measured between the two lines when they are driven with opposite polarity signals. Zdiff is equal to twice the value of Zodd

Odd Impedance The impedance measured when testing only one of the differential traces referenced to the ground plane. The differential signals need to be driven with opposite polarity signals. Zodd is equal to half of the value of Zdiff

Common Impedance The impedance measured between the two lines when they are driven with the same signal. Zcommon is half the value of Zeven

Even Impedance The impedance measured when testing only one of the differential traces referenced to the ground plane. The differential signals need to be driven with the same identical signal. Zeven is twice the value of Zcommon

Microstrip Transmission Line Models

Models have been created to approximate the characteristics of the microstrip transmission line.

h=\frac{b-t}{2}

ke=\tanh \left ( \frac{\pi w}{2b} \right )\cdot \tanh \left ( \frac{\pi }{2}\cdot\frac{w+s}{b} \right )

ko=\tanh \left ( \frac{\pi w}{2b} \right )\cdot \coth \left ( \frac{\pi }{2}\cdot\frac{w+s}{b} \right )

k_{e}^{`}=\sqrt{1-ke^{2}}

k_{o}^{`}=\sqrt{1-ko^{2}

z_{o,e}=\frac{30\pi }{\sqrt{er}}\cdot \frac{K(k_{e}^{`})}{K(k_{e})}

z_{o,o}=\frac{30\pi }{\sqrt{er}}\cdot \frac{K(k_{o}^{`})}{K(k_{o})}

Z_{o,ss}=symmetric\:stripline(w,t,h,er)

C_{f}^{`}\left ( \frac{t}{b} \right )=\frac{.0885\eta_{r}}{\pi }\left \{ \frac{2b}{b-t}\ln \left ( \frac{2b-t}{b-t} \right )-\left ( \frac{t}{b-t} \right )\ln \left ( \frac{b^{2}}{\left ( b-t \right )^{2}}-1 \right ) \right \}

C_{f}^{`}\left ( 0 \right )=\frac{.0885e_{r}}{\pi }\cdot 2\ln \left ( 2 \right )

k_{ideal}=\text sech\left ( \frac{\pi w}{2b} \right )

k_{ideal}^{`}=\text tanh\left ( \frac{\pi w}{2b} \right )

主站蜘蛛池模板: 陇川县| 嘉荫县| 满洲里市| 青田县| 镇江市| 济宁市| 双城市| 五寨县| 新平| 宿州市| 逊克县| 朝阳区| 安陆市| 安乡县| 石景山区| 凉城县| 宝坻区| 辉南县| 陇西县| 曲麻莱县| 鸡西市| 枝江市| 威信县| 武汉市| 海城市| 界首市| 英超| 福安市| 屯留县| 利川市| 新巴尔虎左旗| 外汇| 盱眙县| 孟连| 额尔古纳市| 北票市| 兴安县| 东兰县| 比如县| 克什克腾旗| 彭水|