电影一区二区三区_亚洲激情二区_亚洲欧洲成人av每日更新_91超碰国产在线

Edge Coupled Microstrip Impedance

PCB Differential Microstrip Impedance Calculator

Differential Microstrip Impedance Calculator

Edge Coupled Microstrip Impedance Calculator

differntial microstrip impedance diagram

Inputs

Trace Thickness
T
Substrate Height
H1
Trace Width
W
Trace Spacing
S
Substrate Dielectric
Er

Outputs

Odd (Z):????
Even (Z):????
Common (Z):????
Differential (Z):????
????

Introduction

The edge couple differential microstrip transmission line is a common technique for routing differential traces. There are four different types of impedance used in characterizing differential trace impedances. This calculator finds both odd and even transmission line impedance. Modeling approximation can be used to understand the impedance of the differential microstrip transmission line.

Description

An edge couple differential microstrip transmission line is constructed with two traces referenced to the same reference plane. There is a dielectric material between them. There is also some coupling between the lines. This coupling is one of the features of differential traces. Usually it is good practice to match differential trace length and to keep the distances between the traces consistent. Also avoid placing vias and other structures between these traces.

Differential Impedance Definitions

Differential Impedance The impedance measured between the two lines when they are driven with opposite polarity signals. Zdiff is equal to twice the value of Zodd

Odd Impedance The impedance measured when testing only one of the differential traces referenced to the ground plane. The differential signals need to be driven with opposite polarity signals. Zodd is equal to half of the value of Zdiff

Common Impedance The impedance measured between the two lines when they are driven with the same signal. Zcommon is half the value of Zeven

Even Impedance The impedance measured when testing only one of the differential traces referenced to the ground plane. The differential signals need to be driven with the same identical signal. Zeven is twice the value of Zcommon

Microstrip Transmission Line Models

Models have been created to approximate the characteristics of the microstrip transmission line.

er_{eff1}=\frac{er+1}{2}+\left ( \frac{er-1}{2} \right )\cdot \left ( \sqrt{\frac{w}{w+12h}}+.04\left ( 1-\frac{w}{h} \right )^{2} \right )

er_{eff2}=\frac{er+1}{2}+\left ( \frac{er-1}{2} \right )\cdot \left ( \sqrt{\frac{w}{w+12h}} \right )

a_{0}=.7287\left ( er_{eff}-\frac{er+1}{2} \right )\cdot \left ( \sqrt{1-e^{-.179u}} \right )

b_{0}=\frac{.747\cdot er}{.15+er}

c_{0}=b_{0}-\left ( b_{0}-.207 \right )\cdot e^{-.414u}

d_{0}=.593+.694e^{-.562u}

g=\frac{s}{h}

w_{eff}=w+\frac{t}{\pi }\cdot \ln \left ( \frac{4e}{\sqrt{\left ( \frac{t}{h} \right )^{2}+\left ( \frac{t}{w\pi +1.1t\pi } \right )^{2}}} \right )\cdot \frac{er_{eff}+1}{2\cdot er_{eff}}

er_{effo}=\left ( \left ( .5\cdot \left ( er+1 \right )+a_{0}-er_{eff} \right )\cdot e^{-c_{0}\cdot g^{d_{0}}} \right )+er_{eff}

zo_{surf}=\frac{\eta_{o}}{2\pi \sqrt{2}\sqrt{er_{eff}+1}}\cdot \ln \left ( 1+\left ( 4\cdot \frac{h}{w_{eff}} \right )\cdot \left (\left ( 4\cdot \frac{h}{w_{eff}} \right )\cdot\left ( \frac{14\cdot er_{eff}+8}{11\cdot er_{eff}} \right )+ temp \right )\right )

temp=\sqrt{16\left ( \frac{h}{w_{eff}} \right )^{2}\cdot \left ( \frac{14\cdot er_{eff}+8}{11\cdot er_{eff}} \right )^{2}+\left ( \frac{er_{eff}+1}{2er_{eff}} \right )\cdot \pi ^{2}}

q_{1}=.8695\cdot u^{.194}

q_{2}=1+.7519\cdot g+1.89g^{2.31}

q_{3}=.1975+\left ( 16.6+\left ( \frac{8.4}{g} \right )^{6} \right )^{-.387}+\frac{1}{241} \cdot \ln \left ( \frac{g^{10}}{1+\left ( \frac{g}{3.4} \right )^{10}} \right )

q_{4}=\frac{2\cdot q_{1}}{q_{2}\left ( e^{-g}\cdot u^{q_{3}}+\left ( 2-e^{-g} \right )\cdot u^{-q_{3}} \right )}

q_{5}=1.794+1.14\cdot \ln \left ( 1+\left ( \frac{.638}{g+.517\cdot g^{2.43}} \right ) \right )

q_{6}=.2305+\frac{1}{281.3}\cdot \ln \left ( \frac{g^{10}}{1+\left ( \frac{g}{5.8} \right )^{10}} \right )+\frac{1}{5.1}\cdot \ln \left ( 1+.598\cdot g^{1.154} \right )

q_{7}=\frac{10+190\cdot g^{2}}{1+82.3\cdot g^{3}}

q_{8}=e^{\left(-6.5 -.95\cdot\ln (g) -\left (\frac{g}{.15}\right )^{5}\right)}

q_{9}=\ln \left ( q_{7} \right )\cdot \left ( q_{8}+\frac{1}{16.5} \right )

q_{10}=\left ( \frac{1}{q_{2}} \right )\cdot \left ( q_{2}\cdot q_{4}-q_{5}\cdot e^{\left ( \ln\left ( u \right )\cdot q_{6}\cdot u^{-q_{9}} \right )} \right )

zo_{odd}=zo_{surf}\cdot \left [ \frac{\sqrt{\frac{er_{eff}}{er_{effo}}}}{1-\left ( \frac{zo_{surf}}{\eta_{o}}\cdot q_{10}\sqrt{er_{eff}} \right )} \right ]

v=\frac{u\cdot \left ( 20+g^{2} \right )}{10+g^{2}}+ge^{-g}

ae(v)=1+\frac{\ln \left ( \frac{v^{4}+\left ( \frac{v}{52} \right )^{2}}{v^{4}+.432} \right )}{49}+\frac{\ln \left ( 1+\left ( \frac{v}{18.1} \right )^{3} \right )}{18.7}

b_{e}(e_{r})=.564\left ( \frac{er-.9}{er+3} \right )^{.053}

er_{eff,e}=\frac{er+1}{2}+\frac{er-1}{2}\cdot \left ( 1+\frac{10}{v} \right )^{-a}\cdot e^{v}\cdot b_{e}(e_{r})

zo_{even}=zo_{surf}\cdot \frac{\sqrt{\frac{er_{eff}}{er_{eff,e}}}}{1-\frac{zo_{surf}}{\eta_{o}}\cdot q_{4}\cdot \sqrt{er_{eff}}}

The source for these formulas are found in the IPC-2141A (2004) ?¢????Design Guide for High-Speed Controlled Impedance Circuit Boards?¢???? and Wadell, Brian C. Transmission Line Design Handbook. Norwood: Artech House Inc, 1991

主站蜘蛛池模板: 凭祥市| 荃湾区| 深水埗区| 邹平县| 汶川县| 江达县| 建湖县| 晋城| 获嘉县| 安顺市| 德令哈市| 东乡| 咸宁市| 大关县| 邢台县| 张家港市| 犍为县| 都安| 将乐县| 怀来县| 娱乐| 水富县| 诸城市| 曲周县| 水城县| 鹤壁市| 永靖县| 股票| 剑河县| 遵义县| 千阳县| 浪卡子县| 航空| 含山县| 定南县| 叙永县| 凤山县| 克东县| 萨迦县| 翁牛特旗| 开阳县|